Geotechnical Engineering and Dams

Dam Engineering

Design of Dams

• Selection of dam sites and best suited dam type. All design stages for dams and appurtenant structures.
• Analyses of dams e.g. by slip circle, 3D and 3D FEM, thermal, consolidation and seepage analyses.
• Design of construction pits, including determination of support type, grouting/sealing, ground water lowering and water handling measures.
• Investigations, design and supervision for construction of impermeable barriers and drainage systems in dams and their foundations and abutments.

Monitoring

• Design of dam instrumentation. Evaluation of deformations, stresses, water pressures, temperatures, water level and geodetic data and comparison of measured and predicted monitoring data during construction and operation.
• Back analyses of deformation, strength, permeability and other dam and foundation parameters using monitoring data and re-evaluation of the dam stability.
• Design of operation and maintenance manuals.
• Preparation of yearly dam reports, safety analyses and reports.

Special Topics

Environmental Investigations

• Determination of environmental influences of dams and reservoirs.
• Geotechnical input to environmental impact studies.

Consultancy to Contractors and Financiers

• Preparation of expert reports, risk evaluation, cost estimates, support to project management. Advice on all geotechnical aspects of the works, including technical aspects of claims.
• Support for preparation of proposals and detailed construction design.

Rehabilitation

• Recording existing conditions, damage assessment, development of rehabilitation concepts, design and supervision of rehabilitation works for existing dams and appurtenant structures.

Construction of asphalt core in rockfill dam

© Lahmeyer International
Geological and geotechnical challenges are often very demanding when planning hydraulic structures. Hydropower, water supply and irrigation projects require detailed geotechnical investigations before the start of the actual design works. During planning and execution of the works, ongoing input by geotechnical specialists is essential. The adopted design inevitably depends on the specific project requirements and actual in-situ conditions.

The focus of Lahmeyer International in the field of geotechnics is: design, supervision and monitoring during construction of all kinds of rock and soil structures, such as caverns, tunnels, slopes, dykes and dams. This includes the evaluation of the optimum location and orientation of the structures by designing individually tailored geotechnical investigation programmes. The scope of works covers all investigations and testing that is necessary to determine the required geotechnical parameters for underground structures, dams, foundations, etc. as well as for obtaining construction materials such as natural fill or aggregate materials.

Lahmeyer International’s substantial experience over many years guarantees that the geotechnical work for all phases in the fields of investigations, reviews, planning, tendering, construction supervision and commissioning can be supplied from one source using experienced specialists. Our specialists can run their own projects, or prepare expert reports, or can be integrated within design or construction teams. Being up to date in the field of geotechnics also requires utilisation of a wide range of computer software. These run largely under the latest easy to use operating systems. The geotechnical staff of Lahmeyer International stays in close contact with suppliers and developers of proprietary software products in order to secure further developments and updates of the software packages.

Solving Geotechnical Challenges for Hydropower and Water Resources Projects

Geological Investigations

- Establishing geological basics from regional and detailed mappings, aerial photo interpretation, survey of stratigraphy, lithology, petrography, discontinuity systems and tectonics of the site.
- Borehole and surface geophysics for a continuous survey of the site characteristics in collaboration with specialised firms.
- Evaluation of seismic activity and estimation of seismic risk.
- Identification of material resources and testing of their suitability as dam fill materials or concrete aggregates.

Engineering and Hydrogeology

- Design and tendering of geotechnical investigation programs.
- Execution, supervision and evaluation of in-situ and laboratory testing of all kinds, often in cooperation with specialised companies.
- Rockmass and soil classification, estimation of excavation and support classes.
- Determination of geotechnical parameters as basis for static and dynamic analyses.
- Judgement of ground water conditions and their influence on structures.
- Design of ground water barriers such as cut-off walls and grout curtains.

Geotechnical Engineering and Dams

- Design and analyses of structures in rock.
- Design, analysis and support evaluation for all design for slopes, tunnels, caverns, shafts, etc.
- Determination of excavation sequences and techniques, tunnelling methods, handling of water, specialised construction methods and support measures.
- Monitoring
 - Design of instrumentation systems and monitoring programs.
 - Evaluation and interpretation of monitoring data during project construction and operation.
 - Vibrations measurements to check blast vibrations.
- Geological and geotechnical mapping during construction and ‘as-build’ documentation after construction.
- Back analyses of structures and comparison of measured against predicted monitoring data.
- Adaptation of support measures according to encountered conditions and monitored behaviour if so required.

Geology

- Establishing geological basics from regional and detailed mappings, aerial photo interpretation, survey of stratigraphy, lithology, petrography, discontinuity systems and tectonics of the site.
- Borehole and surface geophysics for a continuous survey of the site characteristics in collaboration with specialised firms.
- Evaluation of seismic activity and estimation of seismic risk.
- Identification of material resources and testing of their suitability as dam fill materials or concrete aggregates.

Engineering and Hydrogeology

- Design and tendering of geotechnical investigation programs.
- Execution, supervision and evaluation of in-situ and laboratory testing of all kinds, often in cooperation with specialised companies.
- Rockmass and soil classification, estimation of excavation and support classes.
- Determination of geotechnical parameters as basis for static and dynamic analyses.
- Judgement of ground water conditions and their influence on structures.
- Design of ground water barriers such as cut-off walls and grout curtains.

Geotechnical Engineering and Dams

- Design and analyses of structures in rock.
- Design, analysis and support evaluation for all design for slopes, tunnels, caverns, shafts, etc.
- Determination of excavation sequences and techniques, tunnelling methods, handling of water, specialised construction methods and support measures.
- Monitoring
 - Design of instrumentation systems and monitoring programs.
 - Evaluation and interpretation of monitoring data during project construction and operation.
 - Vibrations measurements to check blast vibrations.
- Geological and geotechnical mapping during construction and ‘as-build’ documentation after construction.
- Back analyses of structures and comparison of measured against predicted monitoring data.
- Adaptation of support measures according to encountered conditions and monitored behaviour if so required.
Geological and geotechnical challenges are often very demanding when planning hydraulic structures. Hydropower, water supply and irrigation projects require detailed geotechnical investigations before the start of the actual design works. During planning and execution of the works, ongoing input by geotechnical specialists is essential. The adopted design inevitably depends on the specific project requirements and actual in-situ conditions.

The focus of Lahmeyer International in the field of geotechnics is: design, supervision and monitoring during construction of all kinds of rock and soil structures, such as caverns, tunnels, slopes, dykes and damns. This includes the evaluation of the optimum location and orientation of the structures by designing individually tailored geotechnical investigation programmes. The scope of works covers all investigations and testing that is necessary to determine the required geotechnical parameters for underground structures, dams, foundations, etc. as well as for obtaining construction materials such as natural fill or aggregate materials.

Lahmeyer International’s substantial experience over many years guarantees that the geotechnical work for all phases in the fields of investigation, review, planning, tendering, construction supervision and commissioning can be supplied from one source using experienced specialists. Our specialists can run their own projects, or prepare expert reports, or can be integrated within design or construction teams.

Solving Geotechnical Challenges for Hydropower and Water Resources Projects

Geology

- Establishing geological basics from regional and detailed mappings, aerial photo interpretation, survey of stratigraphy, lithology, petrography, discontinuity systems and tectonics of the site.
- Bowlhole and surface geophysics for a continuous survey of the site characteristics in collaboration with specialised firms.
- Evaluation of seismic activity and estimation of seismic risk.
- Identification of material sources and testing of their suitability as dam fill materials or concrete aggregates.

Engineering and Hydro Geology

- Design and tendering of geotechnical investigation programmes. Execution, supervision and evaluation of in-situ and laboratory testing of all kinds, often in cooperation with specialised companies.
- Rockmass and soil classification, estimation of excavation and support classes. Determination of geotechnical parameters as basis for static and dynamic analyses.
- Judgement of ground water conditions and their influence on structures. Design of ground water barriers such as cut-off walls and grout curtains.

Underground and Rock Engineering

- Design and analyses of Structures in Rock
 - Design, analysis and support evaluation for all designs in slopes, tunnels, caverns, shafts, etc.
 - Determination of excavation sequences and techniques, blastin- ing methods, handling of rock, specialised construction methods and support measures.
- Monitoring
 - Design of instrumentation systems and monitoring programs. Evaluation and interpretation of monitoring data during project construction and operation.
 - Vibration measurements to check blast vibrations.
- Geological and geotechnical mapping during construction and ‘as-build’ documentation after construction.
- Back analyses of structures and comparison of measured against predicted monitoring data. Adaptation of support measures according to encountered conditions and monitored behavior if so required.

Geotechnical Engineering and Dams

- Establishing geological basics from regional and detailed mappings, aerial photo interpretation, survey of stratigraphy, lithology, petrography, discontinuity systems and tectonics of the site.
- Bowlhole and surface geophysics for a continuous survey of the site characteristics in collaboration with specialised firms.
- Evaluation of seismic activity and estimation of seismic risk.
- Identification of material sources and testing of their suitability as dam fill materials or concrete aggregates.

- Establishing geological basics from regional and detailed mappings, aerial photo interpretation, survey of stratigraphy, lithology, petrography, discontinuity systems and tectonics of the site.
- Bowlhole and surface geophysics for a continuous survey of the site characteristics in collaboration with specialised firms.
- Evaluation of seismic activity and estimation of seismic risk.
- Identification of material sources and testing of their suitability as dam fill materials or concrete aggregates.

- Establishing geological basics from regional and detailed mappings, aerial photo interpretation, survey of stratigraphy, lithology, petrography, discontinuity systems and tectonics of the site.
- Bowlhole and surface geophysics for a continuous survey of the site characteristics in collaboration with specialised firms.
- Evaluation of seismic activity and estimation of seismic risk.
- Identification of material sources and testing of their suitability as dam fill materials or concrete aggregates.

- Establishing geological basics from regional and detailed mappings, aerial photo interpretation, survey of stratigraphy, lithology, petrography, discontinuity systems and tectonics of the site.
- Bowlhole and surface geophysics for a continuous survey of the site characteristics in collaboration with specialised firms.
- Evaluation of seismic activity and estimation of seismic risk.
- Identification of material sources and testing of their suitability as dam fill materials or concrete aggregates.

- Establishing geological basics from regional and detailed mappings, aerial photo interpretation, survey of stratigraphy, lithology, petrography, discontinuity systems and tectonics of the site.
- Bowlhole and surface geophysics for a continuous survey of the site characteristics in collaboration with specialised firms.
- Evaluation of seismic activity and estimation of seismic risk.
- Identification of material sources and testing of their suitability as dam fill materials or concrete aggregates.
Solving Geotechnical Challenges for Hydropower and Water Resources Projects

Geotechnical and geotechnical challenges are often very demanding when planning hydromechanical structures. Hydropower, water supply and irrigation projects require detailed geotechnical investigations before the start of the actual design works. During planning and execution of the works, ongoing input by geotechnical specialists is essential. The adopted design inevitably depends on the specific project requirements and actual in-situ conditions.

The focus of Lahmeyer International in the field of geotechnics is: design, supervision and monitoring during construction of all kinds of rock and soil structures, such as caverns, tunnels, slopes, dykes and dams. This includes the evaluation of the optimum location and orientation of the structures by designing individually tailored geotechnical investigation programmes. The scope of works covers all investigations and testing that is necessary to determine the required geotechnical parameters for underground structures, dams, foundations, etc. as well as obtaining construction materials such as natural fill or aggregate materials.

Lahmeyer International’s substantial experience over many years guarantees that the geotechnical work for all phases in the fields of investigation, review, planning, tendering, construction supervision and commissioning can be supplied from one source using experienced specialists. Our specialists can run their own projects, or prepare expert reports, or can be integrated within design or construction teams.

Geotechnical Engineering and Dams

Geological and geotechnical investigations

- Establishing geological basics from regional and detailed mappings, aerial photo interpretation, survey of stratigraphy, lithology, petrography, discontinuity systems and tectonics of the site.
- Borehole and surface geophysics for a continuous survey of the site characteristics in collaboration with specialised firms.
- Evaluation of seismic activity and estimation of seismic risk.
- Identification of material sources and testing of their suitability as fill materials or concrete aggregate materials.

Lahmeyer International stays in close contact with suppliers and developers of proprietary software products in order to secure further developments and updates of the software package.

Graphical and statistical analysis of orientation data
- Foundation excavation for concrete gravity dam
- 3D model for underground openings
- Result plot of 2D finite element analysis for excavations
- Excavated powerhouse cavern
- Break through of TBM

 Petr Roszakowski for slope structure

Concrete works in powerhouse cavern

Set up for direct shear test

Rock excavation for intake structure

Evolution of direct shear test

Solving Geotechnical Challenges for Hydropower and Water Resources Projects

Geology

- Establishing geological basics from regional and detailed mappings, aerial photo interpretation, survey of stratigraphy, lithology, petrography, discontinuity systems and tectonics of the site.
- Borehole and surface geophysics for a continuous survey of the site characteristics in collaboration with specialised firms.
- Evaluation of seismic activity and estimation of seismic risk.
- Identification of material sources and testing of their suitability as fill materials or concrete aggregate materials.

Geotechnical investigations

- Design and tendering of geotechnical investigation programs.
- Execution, supervision and evaluation of in-situ and laboratory testing of all kinds, often in cooperation with specialised companies.
- Rockmass and soil classification, estimation of excavation and support classes. Determination of geotechnical parameters as basis for static and dynamic analysis.
- Judgement of ground water conditions and their influence on structures. Design of ground water barriers such as cut-off walls and grout curtains.

Geotechnical Engineering and Dams

Design and Analysis of Structures in Rock

- Design, analysis and support evaluation for all elements such as slopes, tunnels, caverns, shafts, etc.
- Determination of excavation sequences and techniques, blasting methods, handling of waste.
- Specialised construction methods and support measures.

Monitoring

- Design of instrumentation systems and monitoring programs.
- Evaluation and interpretation of monitoring data during project construction and operation.
- Vibe measurements to check blast vibrations.
- Geological and geotechnical mapping during construction and ‘as-built’ documentation after construction.
- Rock analyses of structures and comparison of measured against predicted monitoring data.
- Adaptation of support measures according to encountered conditions and monitored behavior if so required.
Geotechnical Engineering and Dams

Dam Engineering

- **Design of Dams:**
 - Selection of dam sites and best suited dam type. All design stages for dams and appurtenant structures.
 - Analyses of dams e.g. by slip circle, 2D and 3D FEM, thermal, consolidation and seepage analyses.
 - Design of construction pits, including determination of support type, grouting/sealing, ground water lowering and water handling measures.
 - Investigations, design and supervision for construction of impermeable barriers and drainage systems in dams and their foundations and abutments.

- **Monitoring:**
 - Design of dam instrumentation. Evaluation of deformations, stresses, water pressures, temperature, hydraulic and geotechnical data and comparison of measured and predicted monitoring data during construction and operation.
 - Back analyses of deformation, strength, permeability and other dam and foundation parameters using monitoring data and re-evaluation of the dam stability.
 - Design of operation and maintenance manuals.
 - Preparation of yearly dam reports, safety analyses and reports.

Special Topics

- **Environmental Investigations:**
 - Determination of environmental influences of dams and reservoirs.
 - Geotechnical input to environmental impact studies.

- **Consultancy to Contractors and Financiers:**
 - Preparation of expert reports, risk evaluation, cost estimates, support to project management. Advice on all geotechnical aspects of the works, including technical aspects of claims.
 - Support for preparation of proposals and detailed construction design.

- **Construction:**
 - Construction supervision.
 - Damage and loss analyses.
 - Due diligence consultancy.

- **Rehabilitation:**
 - Recording existing conditions, damage assessment, development of rehabilitation concepts, design and supervision of rehabilitation works for existing dams and appurtenant structures.

Environmental Investigations

- Determination of environmental influences of dams and reservoirs.
- Geotechnical input to environmental impact studies.

Consultancy to Contractors and Financiers

- Preparation of expert reports, risk evaluation, cost estimates, support to project management. Advice on all geotechnical aspects of the works, including technical aspects of claims.
- Support for preparation of proposals and detailed construction design.

Construction

- Construction supervision.
- Damage and loss analyses.
- Due diligence consultancy.

Rehabilitation

- Recording existing conditions, damage assessment, development of rehabilitation concepts, design and supervision of rehabilitation works for existing dams and appurtenant structures.

Lahmeyer International GmbH
Friedberger Str. 173
61118 Bad Vilbel, Germany
Tel.: +49 (61 01) 55 - 0
Fax: +49 (61 01) 55 - 22 22
E-Mail: info@lahmeyer.de
Internet: www.lahmeyer.de

Hydropower and Water Resources Division
Tel.: +49 (61 01) 55 - 17 90
Fax: +49 (61 01) 55 - 17 15
E-Mail: info@lahmeyer.de
Internet: www.lahmeyer.de

© Lahmeyer International 03.12

Geotechnical Engineering and Dams
Geotechnical Engineering and Dams

Design of Dams
- Selection of dam sites and best suited dam type. All design stages for dams and appurtenant structures.
- Analyses of dams e.g. by slip circle, 3D and 2D FEM, thermal, consolidation and seepage analyses.
- Design of construction pits, including determination of support type, grouting/sealing, ground water lowering and water handling measures.
- Investigations, design and supervision for construction of impermeable barriers and drainage systems in dams and their foundations and abutments.

Environmental Investigations
- Determination of environmental influences of dams and reservoirs.
- Geotechnical input to environmental impact studies.

Consultancy to Contractors and Financiers
- Preparation of expert reports, risk evaluation, cost estimates, support to project management. Advice on all geotechnical aspects of the works, including technical aspects of claims.
- Support for preparation of proposals and detailed construction design.
- Construction supervision.
- Damage and loss analysis.
- Due diligence consultancy.

Rehabilitation
- Recording existing conditions, damage assessment, development of rehabilitation concepts, design and supervision of rehabilitation works for existing dams and appurtenant structures.

Monitoring
- Design of dam instrumentation. Evaluation of deformations, stresses, water pressures, temperature, watertable and geodetic data and comparison of measured and predicted monitoring data during construction and operation.
- Back analyses of deformation, strength, permeability and other dam and foundation parameters using monitoring data and re-evaluation of the dam stability.
- Design of operation and maintenance manuals.
- Preparation of yearly dam reports, safety analyses and reports.

Special Topics
- Construction of asphalt core in rockfill dam
- Double curved arch dam

© Lahmeyer International 03.12
Lahmeyer International GmbH
Friedberger Str. 173
61118 Bad Vilbel, Germany
Tel.: +49 (61 01) 55 - 0
Fax: +49 (61 01) 55 - 22 22
E-Mail: info@lahmeyer.de
Internet: www.lahmeyer.de

Hydropower and Water Resources Division
Tel.: +49 (61 01) 55 - 17 90
Fax: +49 (61 01) 55 - 17 15
E-Mail: info@lahmeyer.de
Internet: www.lahmeyer.de